
	 1	

User-Defined	Aggregate	Operators	in	Tutorial	D	and	Rel	
Dave	Voorhis	<dave	at	reldb	dot	org>	
Version	1.07	August	2016	
	
As	defined	by	Date	&	Darwen	in	The	Third	Manifestoi	series	of	documents,	the	database	
language	Tutorial	D	supports	pre-defined	aggregate	operators.	For	example,	given	the	
following	relvar…	
	

VAR myvar REAL RELATION {x INT, c CHAR} KEY {x};
	
…containing	the	following	relation…	
	

x
INTEGER

c
CHARACTER

1 A
2 A
3 B
4 B
5 B
10 D
12 D

	
…the	following	expression…	
	
	 SUM(myvar, x)

…will	return	37.	

However,	this	is	not	a	typical	Tutorial	D	operator	invocation.	The	first	operand	may	be	any	
relation,	and	the	second	operand	may	be	any	attribute	expression	in	the	scope	of	a	tuple	of	
the	relation.		For	example,	this	expression…	
	

SUM(myvar, x * 2)	
	
…will	return	74.	Whilst	it	is	reasonable	to	regard	SUM	as	being	an	operator	that	accepts	any	
relation	for	the	first	argument	(similar	to	IS_EMPTY()	and	the	like),	there	is	nothing	in	
Tutorial	D	to	represent	an	unevaluated	expression	as	an	operand.	Therefore,	SUM(myvar,	x	
*	2)	is	perhaps	better	regarded	of	as	a	“pseudo”	operator	invocation	that	the	compiler	
translates	into	some	conventional	–	but	otherwise	less	ergonomic	–	expression	and/or	
operator	invocation.	
	
Like	SUM,	aggregate	operators	AVG,	MIN,	MAX,	UNION,	XUNION,	COUNT	–	and	others	–	are	
predefined	and	“built	in”,	but	Tutorial	D	does	not	define	facilities	for	creating	user-defined	
aggregate	operators.	
	 	

	 2	

User-defined	Aggregation	
	
Ideally,	we	would	like	to	be	able	to	create	user-defined	aggregate	operators.	The	remainder	
of	this	paper	proposes	mechanisms	for	doing	so,	which	have	been	prototypedii	in	the	Reliii	
implementation	of	Tutorial	D.	
	
As	a	first	step,	we	propose	a	generic	aggregate	read-only	operator	invocation	that	permits	
in-line	specification	a	user-defined	body	similar	to	an	operator	body.		For	example:	
	
	 AGGREGATE(myvar, x);

 RETURN VALUE1 + VALUE2;
END AGGREGATE

	
This	expression	returns	37,	the	same	as	SUM(myvar,	x).	
	
It	specifies	that	a	hidden	accumulator	is	set	to	the	evaluation	of	x	for	the	first	tuple	of	the	
first	operand	to	AGGREGATE.	For	each	subsequent	tuple	in	that	operand,	the	accumulator	is	
set	to	the	accumulator	+	x.	When	there	are	no	more	tuples,	the	accumulator	is	returned.	Its	
similarity	to	an	operator	definition	is	deliberate,	as	it	is	effectively	defining	an	in-line	
operator	similar	to	(and	internally	using)	another	Rel	extension	to	Tutorial	D	for	defining	
anonymous	operators	(aka	lambda	expressions)iv.1	
	
If	there	are	no	tuples	in	the	relation,	an	exception	is	thrown.	
	
Similarly,	the	following…	
	
	 AGGREGATE(myvar, x);

 RETURN VALUE1 * VALUE2;
END AGGREGATE

	
…specifies	that	an	accumulator	is	set	to	the	evaluation	of	x	for	the	first	tuple	in	myvar.	For	
each	subsequent	tuple	in	myvar,	the	accumulator	is	set	to	the	accumulator	*	x.	
	
The	code	between	AGGREGATE(…);	…	END	AGGREGATE	may	be	arbitrarily	complex,	but	
must	return	a	value	of	the	same	type	as	the	second	operand	to	AGGREGATE,	which	is	also	
the	same	type	as	the	generated	parameters	VALUE1	and	VALUE2.	
	
(Aside:	The	unimaginative	parameter	names	VALUE1	and	VALUE2	might	benefit	from	being	
changed	to	something	more	intuitive.)	

																																																								
1	The	syntax	above	is	essentially	a	shorthand	for:	
AGGREGATE(myvar,	x,	OPERATOR	(VALUE1	INT,	VALUE2	INT)	RETURNS	INT;	RETURN	VALUE1	+	VALUE2;	END	
OPERATOR))	
	
I.e.,	it	is:	
AGGREGATE(myvar,	x,	OPERATOR	(VALUE1	INT,	VALUE2	INT)	RETURNS	INT;	RETURN	VALUE1	+	VALUE2;	END	
OPERATOR))	

	 3	

	
There	are	circumstances	where	it	is	desirable	to	set	the	accumulator	to	a	default	value,	and	
return	it	if	the	relation	is	empty	instead	of	throwing	an	exception.	Another	argument	can	be	
passed	to	AGGREGATE	to	indicate	this	identity	or	initial	value,	which	must	also	be	the	same	
type	as	the	second	operand	to	AGGREGATE.		For	example…	
	
	 AGGREGATE(myvar, x, 0);
 RETURN VALUE1 + VALUE2;

END AGGREGATE
	
…will	return	0	if	myvar	is	empty,	and…	
	
	 AGGREGATE(myvar, x, 10);
 RETURN VALUE1 + VALUE2;

END AGGREGATE
	
...will	return	10	if	myvar	is	empty	or	47	if	myvar	contains	the	relation	described	at	the	
beginning	of	this	document.	
	
Just	as	SUM	and	the	other	predefined	aggregate	operators	may	be	used	in	the	SUMMARIZE	
operator,	AGGREGATE	may	be	used	too.		For	example,	the	following…	
	

SUMMARIZE myvar BY {c}: {
 total := AGGREGATE(x); RETURN VALUE1 + VALUE2; END AGGREGATE
} 	

	
…returns:	
	

c
CHARACTER

total
INTEGER

A 3
B 12
D 22

	
As	with	AGGREGATE	when	used	outside	of	SUMMARIZE,	an	optional	second	argument	can	
be	passed	to	set	an	initial	value.		For	example,	the	following…	
	

SUMMARIZE myvar BY {c}: {

 total := AGGREGATE(x, 100); RETURN VALUE1 + VALUE2; END AGGREGATE
} 	

	
	 	

	 4	

…returns:	
	

c
CHARACTER

total
INTEGER

A 103
B 112
D 122

	
User-defined	Aggregate	Operators	in	Rel	
	
Whilst	AGGREGATE	provides	an	effective	way	to	create	user-defined	aggregations	on	a	one-
off	basis,	we’d	ideally	like	to	be	able	to	define	new	general-purpose	aggregate	operators	
that	can	be	reused.	
	
In	Rel,	every	aggregate	operator	<op>	is	defined	as	a	corresponding	operator	with	the	
generic	signature:		
	
AGGREGATE_<op>(ARRAY	TUPLE	{AGGREGAND	<type>,	AGGREGATION_SERIAL})	RETURNS	
<type2>	
	
For	example,	the	operator	invoked	by	SUM(myvar,	x)	is	defined	with	the	specific	signaturev:	
	

AGGREGATE_SUM(ARRAY	TUPLE	{AGGREGAND	INT,	AGGREGATION_SERIAL})	
RETURNS	INT	

	
Likewise,	the	operator	invoked	by	AVG(myvar,	x)	is	defined	with	the	signature:	
	

AGGREGATE_AVG(ARRAY	TUPLE	{AGGREGAND	INT,	AGGREGATION_SERIAL})	
RETURNS	RATIONAL	

	
Tutorial	D	defines	ARRAYs	of	TUPLEs,	but	limits	their	use	to	a	cursor-like	facility	for	
accessing	a	collection	of	tuples	in	a	specified	order.	In	Rel,	ARRAYs	of	TUPLEs	can	be	used	as	
an	operand	type.	
	
The	Rel	compiler	converts	an	expression	like	SUM(myvar,	x	*	10)	to	an	invocation	of	
AGGREGATE_SUM(ARRAY	TUPLE	{AGGREGAND	INT,	AGGREGATION_SERIAL	INT})	RETURNS	
INT	by:	

1.	Extending	myvar	with	two	new	attributes:	
a) A	new	attribute	named	AGGREGAND	whose	value	is	the	result	of	evaluating	x	*	

10;	
b) A	new	attribute	named	AGGREGATION_SERIAL	that	has	a	unique	integer	for	each	

tuple.	The	presence	of	this	attribute	ensures	that	duplicate	values	of	
AGGREGAND	are	retained.	

2.	Projecting	away	all	attributes	except	AGGREGAND	and	AGGREGATION_SERIAL	before	
converting	the	result	to	an	ARRAY;	and		
3.	Invoking	AGGREGATE_SUM	with	the	result.		

	

	 5	

This	means	AGGREGATE_SUM	can	be	a	conventional	operator,	and	new	operators	like	it	can	
be	defined	by	the	user.	For	example,	we	might	want	to	define	an	aggregate	operator	so	that	
an	invocation	like	SUM(myvar,	c)	will	work.	To	do	so,	we’ll	define	a	new	aggregate	operator:	
	
OPERATOR AGGREGATE_SUM(r ARRAY TUPLE {AGGREGAND CHARACTER, AGGREGATION_SERIAL
INTEGER}) RETURNS CHARACTER;
 RETURN
 AGGREGATE (r ORDER(ASC AGGREGAND), AGGREGAND);
 RETURN VALUE1 || VALUE2;
 END AGGREGATE;
END OPERATOR;

We’ve	used	AGGREGATE,	described	above,	to	implement	this	new	aggregation	operator.		
	
Once	implemented,	we	can	use	the	new	operator	via	expressions	like	the	following…	
	

SUM(myvar, c | | ' blah ')

…which	evaluates	to	the	string:	

A blah A blah B blah B blah B blah D blah D blah

Note	the	use	of	ORDER	in	the	above.	ORDER	is	a	Rel	extension	that	converts	a	given	relation	
to	an	ARRAY	with	a	specified	TUPLE	ordering.	It	is	based	on	–	and	employs	exactly	the	same	
syntax	–	as	the	ORDER	clause	of	the	LOAD	…	FROM	construct	for	creating	an	ARRAY	in	
Tutorial	D.	Here,	it	ensures	that	the	result	of	invoking	SUM	on	a	character	attribute	
expression	produces	a	deterministic	result,	which	would	otherwise	not	be	possible	because	
RELATIONs	specify	no	tuple	ordering	and	||	is	not	commutative.	
	
User-defined	Aggregate	Operator	Invocations	
	
Imagine	that	we	wanted	to	define	an	aggregate	operator	for	calculating	the	population	
standard	deviation	of	a	set	of	integers.	We	might	define	the	aggregate	operator	as:	

OPERATOR AGGREGATE_STDEV(data ARRAY TUPLE {AGGREGAND INTEGER, AGGREGATION_SERIAL
INTEGER}) RETURNS RATIONAL;
 RETURN WITH (
 mean := AVG(data, AGGREGAND),
 squarediffs := EXTEND data UNORDER(): {
 squaredifference :=

WITH (difference := CAST_AS_RATIONAL(AGGREGAND) - mean):
 difference * difference
 }
): SQRT(AVG(squarediffs, squaredifference));
END OPERATOR;

Note	the	use	of	UNORDER()	–	a	Rel	extension	that	is	the	counterpart	of	ORDER(…),	which	
converts	an	ARRAY	to	a	corresponding	relation	–	so	that	we	can	use	the	relational	operator	
EXTEND	on	the	source	data.	

	 6	

	
We	can	invoke	this	new	aggregate	operator	directly	with	an	appropriate	operand	type:	
	

AGGREGATE_STDEV(
 REL {
 TUP {AGGREGAND 1, AGGREGATION_SERIAL 1},
 TUP {AGGREGAND 2, AGGREGATION_SERIAL 2},
 TUP {AGGREGAND 3, AGGREGATION_SERIAL 3},
 TUP {AGGREGAND 4, AGGREGATION_SERIAL 4}
 } ORDER()
)

1.118033988749895

However,	that’s	not	particularly	ergonomic	for	general	use.	Ideally,	we’d	like	to	be	able	to	
invoke	it	as:	
	

STDEV(myvar, x)	
	
Unlike	SUM,	AVG,	and	the	other	predefined	aggregate	operators,	STDEV	is	not	part	of	the	
Tutorial	D	specification.	Therefore,	the	compiler	can’t	know	–	by	default,	at	least	–	that	
STDEV	(or	any	other	user-defined	aggregate	operator)	should	necessarily	be	treated	as	an	
aggregate	operator	invocation.	Whilst	aggregate	operator	invocations	within	SUMMARIZE	
can	unambiguously	be	recognised	by	the	compiler’s	implementation	of	SUMMARIZE	–	and	
thus	automatically	translated	into	an	appropriate	invocation	of	AGGREGATE_STDEV	–	direct	
invocation	of	“pseudo”	aggregate	operators	like	STDEV	requires	additional	compiler	and/or	
language	support.	
	
There	are	various	means	by	which	this	could	be	achieved.	In	Rel,	this	is	accomplished	by	
requiring	the	user	to	prefix	user-defined	aggregate	operator	invocations	with	the	keyword	
AGGREGATE.		So,	whilst	the	following	is	not	a	valid	expression	for	obtaining	the	standard	
deviation	of	myvar’s	x	attribute:	
	

STDEV(myvar, x)	
	
The	following	is	valid:	
	

AGGREGATE STDEV(myvar, x)
	
This	style	of	AGGREGATE	invocation	supports	an	optional	third	argument,	as	follows:	
	

AGGREGATE STDEV(myvar, x, 1)	
	
It	requires	a	corresponding	operator	definition	with	the	signature:	
	
OPERATOR AGGREGATE_STDEV(r ARRAY TUPLE {AGGREGAND INTEGER, AGGREGATION_SERIAL
INTEGER}, i <type>) RETURNS RATIONAL;
	

	 7	

Where	<type>	may	be	any	type.	This	is	intended	to	provide	an	initial	or	default	value,	but	
may	be	used	for	any	purpose	appropriate	to	the	user-defined	aggregate	operator.	
	
User-defined	aggregate	operators	may	be	invoked	by	SUMMARIZE,	so	the	following	is	valid:	
	
SUMMARIZE myvar BY {c}: {stdev := STDEV(x)}

Note	that	the	AGGREGATE	prefix	is	not	required	in	SUMMARIZE,	as	it	is	when	invoking	an	
aggregate	operator	outside	of	SUMMARIZE.	
	
An	optional	initial	or	default	(or	other	purpose)	value	may	be	passed,	assuming	an	
appropriate	user-defined	aggregate	operator	has	been	defined.	For	example:	
	
SUMMARIZE myvar BY {c}: {stdev := STDEV(x, 1)}	
	
Tutorial	D	defines	some	built-in	aggregate	operators	has	having	two	versions,	e.g.,	SUM	and	
SUMD,	or	AVG	and	AVGD.		The	operators	ending	with	‘D’	may	only	be	invoked	inside	
SUMMARIZE,	and	represent	an	invocation	that	eliminates	duplicate	tuples	from	the	
attribute	expression.		To	express	the	equivalent	when	invoking	a	user-defined	aggregate	
operator,	the	keyword	DISTINCT	must	prefix	the	attribute	expression.		For	example:	
	
SUMMARIZE myvar BY {c}: {stdev := STDEV(DISTINCT x)}	
	
This	may	also	be	used	with	an	initial	or	default	(or	other	purpose)	value.	For	example:	
	
SUMMARIZE myvar BY {c}: {stdev := STDEV(DISTINCT x, 1)}
	
To	support	this,	the	aggregate	operator	must	be	defined	with	a	corresponding	additional	
parameter.		For	example:	
	
OPERATOR AGGREGATE_STDEV(data ARRAY TUPLE {AGGREGAND RATIONAL, AGGREGATION_SERIAL INTEGER},
initial RATIONAL) RETURNS RATIONAL;
 RETURN WITH (
 mean :=
 CAST_AS_RATIONAL(AGGREGATE(data, AGGREGAND, initial);

RETURN VALUE1 + VALUE2; END AGGREGATE) /
 CAST_AS_RATIONAL(AGGREGATE(data, 1, 0);

RETURN VALUE1 + VALUE2; END AGGREGATE),
 squarediffs := EXTEND data UNORDER(): {
 squaredifference := WITH (difference := AGGREGAND - mean): difference * difference
 }
): SQRT(AVG(squarediffs, squaredifference));
END OPERATOR;	
	
Why	ARRAY	TUPLE	{AGGREGAND	INTEGER,	AGGREGATION_SERIAL	INTEGER}?	
	
Using	only	existing	Tutorial	D	constructs,	how	do	we	construct	a	user-defined	aggregation	
operator	–	say,	MYAGG	–	so	that	it’s	a	generic,	reusable	operator?	
	
In	Tutorial	D,	we	can	easily	define	new	operators	that	have	specific	parameters	and	work	
with	specific	operands,	but	generic	parameters	and	operands	are	a	challenge.	If	we	wish	to	
define	an	aggregate	operator	that	can	accept	any	relation	–	and	any	attribute	expression	
valid	for	that	relation	–	what	would	be	appropriate	parameter	types	for	its	operator	

	 8	

definition,	assuming	we	can	only	use	existing	Tutorial	D	types	and	operators	or	Tutorial	
D	user-defined	types	and	operators	(if	appropriate),	and	we	can	only	use	existing	Tutorial	
D	constructs,	but	we	can	use	the	compiler	to	transform	Tutorial	D	code	to	other	Tutorial	
D	code?	
	
Ideally,	we’d	like	to	define	an	aggregate	operator	such	that	the	first	argument	can	be	any	
relation	and	the	second	argument	can	be	any	valid	attribute	expression	for	that	relation.	
Unfortunately,	there	are	no	Tutorial	D	constructs	for	specifying	(at	least)	generic	relations	
or	evaluate-it-later	attribute	expressions.	Since	–	per	the	above	–	we	can	only	use	existing	
Tutorial	D	constructs,	we	have	to	rely	on	the	compiler	to	translate	an	invocation	of	MYAGG	
into	some	as-generic-as-possible	equivalent.	
	
An	obvious	solution	is	to	have	the	compiler	translate	any	aggregate	operator	invocation	like	
MYAGG(R,	X	*	10,	-1)	by	doing	the	following:	

1. EXTEND	R	with	the	expression	X	*	10.	Every	new	attribute	in	an	EXTEND	must	be	
given	a	name,	so	we’ll	call	the	result	of	evaluating	X	*	10,	AGGREGAND.	E.g.,	temp	:=	
EXTEND	R:	{AGGREGAND	:=	X	*	10}.	Now	temp	is	a	relation	with	all	the	attributes	of	
R,	along	with	a	new	attribute	AGGREGAND	of	the	same	type	as	X	*	10.	

2. Project	away	all	the	attributes	of	temp	except	AGGREGAND	and	convert	to	an	
ARRAY,	which	means	we	can	invoke	any	operator	that	accepts	an	operand	of	
temp’s	type,	i.e.,	ARRAY	TUPLE	{AGGREGAND	SAME_TYPE_AS(X	*	10)}.	That’s	
certainly	more	generic	than	R!	
	

Unfortunately,	projecting	away	the	attributes	of	R	could	remove	duplicate	values	of	X	*	10	
that	need	to	be	preserved	for	correctly	computing	the	aggregate.	Therefore,	we	need	to	do	
this	instead:	

1. EXTEND	R	with	the	expression	X	*	10.		E.g.,	temp	:=	EXTEND	R:	{AGGREGAND	:=	X	*	
10,	AGGREGATION_SERIAL	:=	<unique	number>}.	Now	temp	is	a	relation	with	all	the	
attributes	of	R,	along	with	new	attributes	AGGREGAND	of	the	same	type	as	X	*	10	
and	AGGREGATION_SERIAL	of	type	INT.	

2. Project	away	all	the	attributes	of	temp	except	AGGREGAND	and	
AGGREGATION_SERIAL	and	convert	to	an	ARRAY,	which	means	we	can	invoke	any	
operator	that	accepts	temp’s	type,	i.e.,	ARRAY	TUPLE	{AGGREGAND	
SAME_TYPE_AS(X	*	10),	AGGREGATION_SERIAL	INT}.	That’s	certainly	more	generic	
than	R	and	the	AGGREGATION_SERIAL	attribute	ensures	that	duplicate	values	of	X	*	
10	are	preserved.	

	
Assuming	the	type	of	X	*	10	is	INT,	a	“generic”	MYAGG	operator	may	thus	be	defined	as:	
	
OPERATOR	MYAGG(r	ARRAY	TUPLE	{AGGREGAND	INT,	AGGREGATION_SERIAL	INT},	initial	INT)	RETURNS	INT;	
	 RETURN	AGGREGATE(r,	AGGREGAND,	initial);	RETURN	VALUE1	+	VALUE2;	END	AGGREGATE	/	100;	
END	OPERATOR;	
	
Using	the	latter	steps	above,	we	can	translate	any	desired	aggregate	expression	involving	
MYAGG	—	with	any	relation	(or	ARRAY)	argument	and	any	attribute	expression	of	type	INT,	
whether	invoked	as	AGGREGATE	MYAGG	or	inside	SUMMARIZE	—	into	a	specific	invocation	
of	the	MYAGGvi	operator.	That’s	as	close	to	being	generic	as	we	can	get	without	introducing	

	 9	

new	Tutorial	D	constructs,	at	the	expense	of	having	to	define	the	operator	with	an	ARRAY	
operand	having	the	attributes	AGGREGAND	<type>	and	AGGREGATION_SERIAL	INT.	
	
The	use	of	ARRAYs	instead	of	RELATIONs	ensures	that	tuple	orderings	can	be	defined	or	
preserved	in	aggregate	operators	where	tuple	ordering	is	critical.	In	future	work,	this	–	
along	with	explicit	use	of	the	AGGREGATION_SERIAL	operand	–	will	become	the	basis	for	
providing	explicit	facilities	for	implementing	LEAD,	LAG,	iTH,	HEAD,	TAIL,	etc.	operations	in	
the	context	of	aggregation.	

	
END	
	

Endnotes	
	
	
	
	
	
	
	
	
	

	
	
	
	

	
	

	
	
	
	
	

i	See	http://www.thethirdmanifesto.com	
ii	The	facilities	described	in	this	paper	are	available	in	Rel	version	3.000,	which	as	of	August	
2016,	is	not	yet	released.	
iii	See	http://reldb.org	
iv	See	http://reldb.org/docs/AnonymousAndFirstClassOperatorsInTutorialD.pdf	
v	There’s	a	little	bit	of	fiction	here.	The	operator	actually	has	the	name	
AGGREGATE_SUM_INTEGER,	for	reasons	irrelevant	to	this	discourse.	For	the	sake	of	
understanding	this	paper,	it	is	sufficient	to	regard	the	operator	as	being	named	
AGGREGATE_SUM.	
vi	In	Rel,	the	aggregate	operator	definition	must	be	named	AGGREGATE_MYAGG	in	order	to	
be	invoked	by	AGGREGATE	MYAGG	or	used	as	MYAGG	within	a	SUMMARIZE	operator	
invocation.	

																																																								

