
Anonymous and First Class Operators for Tutorial D
Dave Voorhis <dave@armchair.mb.ca>
Version 1.01 August 2012

Introduction

This is an informal account of work-in-progress extensions to Date and Darwen's Tutorial D
database language to support anonymous functions/procedures. Much of this work was inspired by
discussions on The Third Manifesto e-mail forum1, and – except where noted – has been
implemented and tested in Rel.2

The remainder of this introduction provides a brief, pragmatic, incomplete3, but hopefully relevant
general overview of anonymous and first class functions. Readers familiar with anonymous and
first class functions may wish to skip to the Operators in Tutorial D section. This document
assumes familiarity with Tutorial D syntax.

Anonymous Functions

In languages that do not support anonymous functions – e.g., C, Pascal, SQL and Java – every
function/procedure definition must be given a name.

For example, a hypothetical procedural language of conventional design will almost undoubtedly
allow a definition of a function named “plus” like this...

function plus(x integer, y integer) returns integer {
 return x + y
}

...and an invocation of that definition referencing it by its name, “plus”, like this:

plus(2, 3)

An anonymous function – also known as a lambda expression – is a function (or procedure)
definition that does not have a name. A hypothetical procedural language that allows anonymous
functions might permit a definition like this:

function (x integer, y integer) returns integer {
 return x + y
}

Note the absence of any function name. In languages that support anonymous function definitions,
they may appear wherever a function invocation would typically reference a function name.

1 The TTM mailing list is a discussion forum for parties interested in the relational model and database languages in
general, and particularly in publications – predominately those by Hugh Darwen and C J Date – related to these
topics. See http://thethirdmanifesto.com

2 Rel is an implementation of Tutorial D. See http://dbappbuilder.sourceforge.net/Rel.html As of this writing, the
version of Rel that implements anonymous operators has not yet been publicly released.

3 In particular, absent are any discussions of underlying theory or practical issues like allowable scope of identifier
references.

1

mailto:dave@armchair.mb.ca
http://dbappbuilder.sourceforge.net/Rel.html
http://thethirdmanifesto.com/

For example, the following defines and then invokes an anonymous function:

(function (x integer, y integer) returns integer {
 return x + y
}) (2, 3)

The definition of the anonymous function has taken the place of the function name in the
invocation.

First Class Functions

Typically, languages that support anonymous functions/procedures also allow functions/procedures
to – in addition to being invoked or executed as usual – be assigned to variables or constants, passed
to functions/procedures as arguments, returned from functions, and stored in data structures. A
language which allows functions/procedures to be treated in this manner, i.e., as function values, is
said to support “first class” functions.

For example, we might be able to assign a function to a variable like this...

var plus = function (x integer, y integer) returns integer {
 return x + y

}

...and perhaps invoke it like this:

(plus)(2, 3)

Parentheses are used around the variable name to clearly indicate that this is not an invocation of a
function named “plus”, but a dereference of a variable named “plus” to obtain its value, which is a
function. The function value is then passed arguments (2 and 3) and invoked.

A language that supports anonymous functions need not support first class functions; a language
that supports first-class functions need not support anonymous functions. However, these language
features almost always appear together. Anonymous functions and first class functions are found in
various programming languages including Haskell, assorted LISP dialects, C#, Python, Javascript
and PHP. The practical applications for anonymous and first class functions are myriad, but beyond
the scope of this document.

Operators in Tutorial D

As defined in published specifications by Date and Darwen, Tutorial D supports conventional
named procedure and function definitions, with polymorphic invocations based on parameter type
inheritance and multiple dispatch4. Date and Darwen call functions and procedures “operators”.
This document upholds their practice by now dispensing with the terms “procedure” and “function”
in favour of “operator”.

4 The details of which are not described here, nor are they relevant to this discourse.

2

Defining a named operator is straightforward5, for example:

OPERATOR plus(x INTEGER, y INTEGER) RETURNS INTEGER;
RETURN x + y;

END OPERATOR;

The operator can be invoked as follows:

plus(2, 3)

The published Tutorial D specifications do not define anonymous or first class operators.

Anonymous Operators

We propose to extend Tutorial D by allowing definition of anonymous operators using familiar
Tutorial D syntax. The name is simply left out. For example:

OPERATOR (x INTEGER, y INTEGER) RETURNS INTEGER;
RETURN x + y;

END OPERATOR

This extension intends to make Tutorial D support first class operators, so the above represents a
selector for an operator value.6

In the Rel implementation of Tutorial D, the above is an expression that can be evaluated.
Evaluating it from a Rel command line returns the text of the operator definition enclosed in double
quotes7. This provides a human-readable representation of a machine-executable operator.

For example, in an interactive session in Rel's DBrowser command-line tool, entering the
following...

OPERATOR (x INTEGER) RETURNS INTEGER;
RETURN x + 1;

END OPERATOR

...returns the following:

"OPERATOR (x INTEGER) RETURNS INTEGER ; RETURN x + 1 ; END
OPERATOR"

5 The use of upper case keywords is a convention to distinguish keywords from user-defined identifiers. It is not
required by the language.

6 Whilst verbose, it is intentionally in keeping with existing syntax. As Tutorial D is intended primarily for
pedagogical purposes, it is appropriate to favour consistency over brevity. However, the author grew weary of
endlessly typing OPERATOR during this phase of Rel development and so created a shorthand form of anonymous
operator definition, using a pair of digraphs in place of “OPERATOR” and “END OPERATOR” which the author
has deemed too aesthetically heinous to mention here.

7 The double quotes surrounding the definition allows client-side parsers to accept operator values without having to
parse their contents. They can simply be read as arbitrary character strings.

3

An anonymous operator definition may be used wherever an operator name can appear, as long as it
is inside parentheses. For example, the above can be defined and immediately invoked as:

(OPERATOR (x INTEGER, y INTEGER) RETURNS INTEGER;
RETURN x + y;

END OPERATOR) (2, 3)

First Class Operators

Since operators are values, they can be assigned to variables. For example, the following is
allowable:

VAR myvar INIT(
OPERATOR (x INTEGER) RETURNS INTEGER;

RETURN x+1;
END OPERATOR);

The contents of variable “myvar” – which is an operator – can be invoked as follows:

(myvar)(2)

Note the parentheses around “myvar”. The operator in “myvar” may not be invoked as follows:

myvar(2)

The above is strictly considered an attempt to invoke a named operator called “myvar”.

Operator Types

Operator types may be explicitly specified. The variable above could have been defined as:

VAR myvar OPERATOR (INTEGER) RETURNS INTEGER;

An operator type is specified as the keyword OPERATOR, followed by a comma-separated list of
parameter types enclosed by parentheses, optionally followed by the RETURNS keyword followed
by the return type.

An operator type may appear wherever a type may appear. Thus, parameters, tuple and relation
attributes, variables, and return types may all be of type OPERATOR.

Higher-order Operators

Operators may return operators. Thus, higher order operators may be defined.

For example, the following is allowed:

VAR myvar INIT (OPERATOR (x INTEGER, y INTEGER) RETURNS
OPERATOR (INTEGER) RETURNS INTEGER;

RETURN OPERATOR (p INTEGER) RETURNS INTEGER;
RETURN x + y + p;

END OPERATOR;
END OPERATOR);

4

The above may be invoked as follows:

(myvar)(2, 3)

It will return an operator of type OPERATOR (INTEGER) RETURNS INTEGER, which can be
invoked as follows:

((myvar)(2, 3))(5)

The return value will be an INTEGER; 10 in this case.

Anonymous Operators in Relations

As noted above, operator types may appear wherever types may appear. Therefore, tuple and
relation attributes may be of type OPERATOR. The following is allowed:

VAR myvar REAL RELATION {
 x INTEGER,
 y OPERATOR (INTEGER, INTEGER) RETURNS INTEGER
} KEY {x};

Attribute 'y' is of type OPERATOR, which accepts two integer arguments and returns an integer.
The relation-valued variable (aka relvar) “myvar” can be assigned a relation:

myvar := RELATION {
 TUPLE {x 1, y OPERATOR (a INTEGER, b INTEGER) RETURNS INTEGER;

RETURN a + b; END OPERATOR},
 TUPLE {x 2, y OPERATOR (a INTEGER, b INTEGER) RETURNS INTEGER;

RETURN a b; END OPERATOR},
 TUPLE {x 3, y OPERATOR (a INTEGER, b INTEGER) RETURNS INTEGER;

RETURN a * b; END OPERATOR},
 TUPLE {x 4, y OPERATOR (a INTEGER, b INTEGER) RETURNS INTEGER;

RETURN a / b; END OPERATOR}
};

The variable has been assigned a relation of tuples, each consisting of an integer 'x' and an operator
value 'y' conforming to the operator type in the relation heading.

The attribute values of 'y' can be invoked as (for example) follows:

EXTEND myvar: {r := (y)(x, 2)}

This expression extends myvar with the result 'r' of evaluating the operator in y with arguments x
and 2. Evaluating it in Rel's DBrowser returns the following:

5

x
INTEGER

y
OPERATOR (INTEGER, INTEGER) RETURNS INTEGER

r
INTEGER

1 OPERATOR (a INTEGER , b INTEGER) RETURNS INTEGER ; RETURN a +
b ; END OPERATOR

3

2 OPERATOR (a INTEGER , b INTEGER) RETURNS INTEGER ; RETURN a - b
; END OPERATOR

0

3 OPERATOR (a INTEGER , b INTEGER) RETURNS INTEGER ; RETURN a *
b ; END OPERATOR

6

4 OPERATOR (a INTEGER , b INTEGER) RETURNS INTEGER ; RETURN a / b
; END OPERATOR

2

Further Work

Scope and Allowable References

The astute reader will note that none of the above examples make reference to local or global
variables or other operators. This is deliberate, as the restrictions – if any – that should be placed on
such references are still to be considered.

When storing operators in a relvar, identifier references that are in scope at the point of insertion
will not necessarily be present at the point of retrieval. For example, the following is currently
allowed:

VAR myvar REAL RELATION {
x INTEGER,
y OPERATOR (INTEGER) RETURNS INTEGER

} KEY {x};
VAR k INTEGER;
DO k := 1 TO 10;

INSERT myvar RELATION {
TUPLE {x k, y OPERATOR (q INTEGER) RETURNS INTEGER;

RETURN q + k;
END OPERATOR}

};
END DO;

Note the reference to transient variable 'k' in the anonymous operator definitions being inserted into
myvar.

In Rel, such references become unbound at the point of insertion. When the operators are later
invoked, Rel will attempt to re-bind them in their own isolated run-time scope. If no appropriate
binding can be made, an error will be thrown. For example...

EXTEND myvar: {r := (y)(2)}

6

...returns:

ERROR: 'k' has not been defined.
Line 1, column 53 near 'k'

It might be reasonable to attempt to re-bind references to local scope upon invocation, but this
raises the potential for unpleasant surprises: unbound references will attempt to bind to whatever
matching names they find, whether intended or not.

Alternatively, the values of variables like 'k' could be captured in a closure at the point of inserting
the tuple containing the operator. However, that closure would either have to be “hidden”
somewhere in the tuple – a violation of Codd's Information Principle – or exposed in some fashion,
perhaps in an additional attribute or by automated rewriting of the operator definition. Clearly,
these are unsatisfactory solutions.

Therefore, for the sake of predictability, consistency and simplicity, it may be preferable to require
that anonymous operators be strictly limited to referencing persistent relvars, and that all other
dynamic values must be supplied via parameters. If even that is considered too permissive,
references to persistent relvars can be disallowed as well, and thus all non-literal values must be
parametrised.

This is a matter for further consideration.

Use of Named Operators as Values

It should be possible to obtain the value of named operators. For example, given the following...

OPERATOR op1(x INTEGER) RETURNS INTEGER;
RETURN x * 2;

END OPERATOR;

OPERATOR op2(p INTEGER, q OPERATOR(INTEGER) RETURNS INTEGER)
RETURNS INTEGER;

RETURN (q)(p + 2);
END OPERATOR;

...it should be possible to evaluate the following:

op2(5, op1)

Note that op1 is passed as an argument to op2. As of this writing, whilst the two operator
definitions may be created in Rel, op1 may not be passed as an argument to op2. This is a work in
progress, noting that such operator invocations may be polymorphic, dependent on the most specific
type of the parameters at the point of invocation.

User-defined Aggregate Operators for SUMMARIZE

SUMMARIZE currently only supports built-in aggregate operators, like AVG, SUM, MIN,
EXACTLYD, etc. An obvious application for first class operators is to allow user-defined
aggregate operators to be passed as arguments to SUMMARIZE.

Consideration for how best to implement this is a work in progress.

7

END

8

	Anonymous and First Class Operators for Tutorial D
	Introduction
	Anonymous Functions
	First Class Functions

	Operators in Tutorial D
	Anonymous Operators
	First Class Operators
	Operator Types
	Higher-order Operators
	Anonymous Operators in Relations
	Further Work
	Scope and Allowable References
	Use of Named Operators as Values
	User-defined Aggregate Operators for SUMMARIZE

